Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
medRxiv ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38699369

RESUMEN

Multi-ancestry statistical fine-mapping of cis-molecular quantitative trait loci (cis-molQTL) aims to improve the precision of distinguishing causal cis-molQTLs from tagging variants. However, existing approaches fail to reflect shared genetic architectures. To solve this limitation, we present the Sum of Shared Single Effects (SuShiE) model, which leverages LD heterogeneity to improve fine-mapping precision, infer cross-ancestry effect size correlations, and estimate ancestry-specific expression prediction weights. We apply SuShiE to mRNA expression measured in PBMCs (n=956) and LCLs (n=814) together with plasma protein levels (n=854) from individuals of diverse ancestries in the TOPMed MESA and GENOA studies. We find SuShiE fine-maps cis-molQTLs for 16% more genes compared with baselines while prioritizing fewer variants with greater functional enrichment. SuShiE infers highly consistent cis-molQTL architectures across ancestries on average; however, we also find evidence of heterogeneity at genes with predicted loss-of-function intolerance, suggesting that environmental interactions may partially explain differences in cis-molQTL effect sizes across ancestries. Lastly, we leverage estimated cis-molQTL effect-sizes to perform individual-level TWAS and PWAS on six white blood cell-related traits in AOU Biobank individuals (n=86k), and identify 44 more genes compared with baselines, further highlighting its benefits in identifying genes relevant for complex disease risk. Overall, SuShiE provides new insights into the cis-genetic architecture of molecular traits.

2.
bioRxiv ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38645217

RESUMEN

Differential expression (DE) analysis is a widely used method for identifying genes that are functionally relevant for an observed phenotype or biological response. However, typical DE analysis includes selection of genes based on a threshold of fold change in expression under the implicit assumption that all genes are equally sensitive to dosage changes of their transcripts. This tends to favor highly variable genes over more constrained genes where even small changes in expression may be biologically relevant. To address this limitation, we have developed a method to recalibrate each gene's differential expression fold change based on genetic expression variance observed in the human population. The newly established metric ranks statistically differentially expressed genes not by nominal change of expression, but by relative change in comparison to natural dosage variation for each gene. We apply our method to RNA sequencing datasets from rare disease and in-vitro stimulus response experiments. Compared to the standard approach, our method adjusts the bias in discovery towards highly variable genes, and enriches for pathways and biological processes related to metabolic and regulatory activity, indicating a prioritization of functionally relevant driver genes. With that, our method provides a novel view on DE and contributes towards bridging the existing gap between statistical and biological significance. We believe that this approach will simplify the identification of disease causing genes and enhance the discovery of therapeutic targets.

3.
Cell Genom ; 4(4): 100527, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38537634

RESUMEN

The seventh iteration of the reference genome assembly for Rattus norvegicus-mRatBN7.2-corrects numerous misplaced segments and reduces base-level errors by approximately 9-fold and increases contiguity by 290-fold compared with its predecessor. Gene annotations are now more complete, improving the mapping precision of genomic, transcriptomic, and proteomics datasets. We jointly analyzed 163 short-read whole-genome sequencing datasets representing 120 laboratory rat strains and substrains using mRatBN7.2. We defined ∼20.0 million sequence variations, of which 18,700 are predicted to potentially impact the function of 6,677 genes. We also generated a new rat genetic map from 1,893 heterogeneous stock rats and annotated transcription start sites and alternative polyadenylation sites. The mRatBN7.2 assembly, along with the extensive analysis of genomic variations among rat strains, enhances our understanding of the rat genome, providing researchers with an expanded resource for studies involving rats.


Asunto(s)
Genoma , Genómica , Ratas , Animales , Genoma/genética , Anotación de Secuencia Molecular , Secuenciación Completa del Genoma , Variación Genética/genética
4.
Nat Commun ; 15(1): 522, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225224

RESUMEN

Expression Quantitative Trait Loci (eQTLs) are critical to understanding the mechanisms underlying disease-associated genomic loci. Nearly all protein-coding genes in the human genome have been associated with one or more eQTLs. Here we introduce a multi-variant generalization of allelic Fold Change (aFC), aFC-n, to enable quantification of the cis-regulatory effects in multi-eQTL genes under the assumption that all eQTLs are known and conditionally independent. Applying aFC-n to 458,465 eQTLs in the Genotype-Tissue Expression (GTEx) project data, we demonstrate significant improvements in accuracy over the original model in estimating the eQTL effect sizes and in predicting genetically regulated gene expression over the current tools. We characterize some of the empirical properties of the eQTL data and use this framework to assess the current state of eQTL data in terms of characterizing cis-regulatory landscape in individual genomes. Notably, we show that 77.4% of the genes with an allelic imbalance in a sample show 0.5 log2 fold or more of residual imbalance after accounting for the eQTL data underlining the remaining gap in characterizing regulatory landscape in individual genomes. We further contrast this gap across tissue types, and ancestry backgrounds to identify its correlates and guide future studies.


Asunto(s)
Genómica , Sitios de Carácter Cuantitativo , Humanos , Haplotipos , Sitios de Carácter Cuantitativo/genética , Alelos , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Perfilación de la Expresión Génica
5.
J Assoc Res Otolaryngol ; 24(6): 575-591, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38036714

RESUMEN

PURPOSE: Chronic age-related imbalance is a common cause of falls and subsequent death in the elderly and can arise from dysfunction of the vestibular system, an elegant neuroanatomical group of pathways that mediates human perception of acceleration, gravity, and angular head motion. Studies indicate that 27-46% of the risk of age-related chronic imbalance is genetic; nevertheless, the underlying genes remain unknown. METHODS: The cohort consisted of 50,339 cases and 366,900 controls in the Million Veteran Program. The phenotype comprised cases with two ICD diagnoses of vertigo or dizziness at least 6 months apart, excluding acute or recurrent vertiginous syndromes and other non-vestibular disorders. Genome-wide association studies were performed as individual logistic regressions on European, African American, and Hispanic ancestries followed by trans-ancestry meta-analysis. Downstream analysis included case-case-GWAS, fine mapping, probabilistic colocalization of significant variants and genes with eQTLs, and functional analysis of significant hits. RESULTS: Two significant loci were identified in Europeans, another in the Hispanic population, and two additional in trans-ancestry meta-analysis, including three novel loci. Fine mapping revealed credible sets of intronic single nucleotide polymorphisms (SNPs) in MLLT10 - a histone methyl transferase cofactor, BPTF - a subunit of a nucleosome remodeling complex implicated in neurodevelopment, and LINC01224 - a proto-oncogene receptor tyrosine kinase. CONCLUSION: Despite the difficulties of phenotyping the nature of chronic imbalance, we replicated two loci from previous vertigo GWAS studies and identified three novel loci. Findings suggest candidates for further study and ultimate treatment of this common elderly disorder.


Asunto(s)
Estudio de Asociación del Genoma Completo , Proteínas Tirosina Quinasas , Humanos , Anciano , Proteínas Tirosina Quinasas/genética , Mareo/genética , Proteínas Proto-Oncogénicas/genética , Vértigo , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad , Factores de Transcripción/genética
7.
Nat Neurosci ; 26(11): 1868-1879, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37798411

RESUMEN

The amygdala processes positive and negative valence and contributes to addiction, but the cell-type-specific gene regulatory programs involved are unknown. We generated an atlas of single-nucleus gene expression and chromatin accessibility in the amygdala of outbred rats with high and low cocaine addiction-like behaviors following prolonged abstinence. Differentially expressed genes between the high and low groups were enriched for energy metabolism across cell types. Rats with high addiction index (AI) showed increased relapse-like behaviors and GABAergic transmission in the amygdala. Both phenotypes were reversed by pharmacological inhibition of the glyoxalase 1 enzyme, which metabolizes methylglyoxal-a GABAA receptor agonist produced by glycolysis. Differences in chromatin accessibility between high and low AI rats implicated pioneer transcription factors in the basic helix-loop-helix, FOX, SOX and activator protein 1 families. We observed opposite regulation of chromatin accessibility across many cell types. Most notably, excitatory neurons had greater accessibility in high AI rats and inhibitory neurons had greater accessibility in low AI rats.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Humanos , Ratas , Animales , Amígdala del Cerebelo/fisiología , Neuronas , Cromatina/metabolismo , Cocaína/farmacología
8.
Genetics ; 224(4)2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37348055

RESUMEN

Exonic variants present some of the strongest links between genotype and phenotype. However, these variants can have significant inter-individual pathogenicity differences, known as variable penetrance. In this study, we propose a model where genetically controlled mRNA splicing modulates the pathogenicity of exonic variants. By first cataloging exonic inclusion from RNA-sequencing data in GTEx V8, we find that pathogenic alleles are depleted on highly included exons. Using a large-scale phased whole genome sequencing data from the TOPMed consortium, we observe that this effect may be driven by common splice-regulatory genetic variants, and that natural selection acts on haplotype configurations that reduce the transcript inclusion of putatively pathogenic variants, especially when limiting to haploinsufficient genes. Finally, we test if this effect may be relevant for autism risk using families from the Simons Simplex Collection, but find that splicing of pathogenic alleles has a penetrance reducing effect here as well. Overall, our results indicate that common splice-regulatory variants may play a role in reducing the damaging effects of rare exonic variants.


Asunto(s)
Sitios de Empalme de ARN , Empalme del ARN , Penetrancia , Exones , Genotipo , ARN Mensajero/genética , Empalme Alternativo
9.
bioRxiv ; 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37214860

RESUMEN

The seventh iteration of the reference genome assembly for Rattus norvegicus-mRatBN7.2-corrects numerous misplaced segments and reduces base-level errors by approximately 9-fold and increases contiguity by 290-fold compared to its predecessor. Gene annotations are now more complete, significantly improving the mapping precision of genomic, transcriptomic, and proteomics data sets. We jointly analyzed 163 short-read whole genome sequencing datasets representing 120 laboratory rat strains and substrains using mRatBN7.2. We defined ~20.0 million sequence variations, of which 18.7 thousand are predicted to potentially impact the function of 6,677 genes. We also generated a new rat genetic map from 1,893 heterogeneous stock rats and annotated transcription start sites and alternative polyadenylation sites. The mRatBN7.2 assembly, along with the extensive analysis of genomic variations among rat strains, enhances our understanding of the rat genome, providing researchers with an expanded resource for studies involving rats.

10.
Front Genet ; 14: 997383, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36999049

RESUMEN

RNA sequencing (RNA-seq) has become an exemplary technology in modern biology and clinical science. Its immense popularity is due in large part to the continuous efforts of the bioinformatics community to develop accurate and scalable computational tools to analyze the enormous amounts of transcriptomic data that it produces. RNA-seq analysis enables genes and their corresponding transcripts to be probed for a variety of purposes, such as detecting novel exons or whole transcripts, assessing expression of genes and alternative transcripts, and studying alternative splicing structure. It can be a challenge, however, to obtain meaningful biological signals from raw RNA-seq data because of the enormous scale of the data as well as the inherent limitations of different sequencing technologies, such as amplification bias or biases of library preparation. The need to overcome these technical challenges has pushed the rapid development of novel computational tools, which have evolved and diversified in accordance with technological advancements, leading to the current myriad of RNA-seq tools. These tools, combined with the diverse computational skill sets of biomedical researchers, help to unlock the full potential of RNA-seq. The purpose of this review is to explain basic concepts in the computational analysis of RNA-seq data and define discipline-specific jargon.

11.
Genetics ; 224(2)2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-36974931

RESUMEN

Power analyses are often used to determine the number of animals required for a genome-wide association study (GWAS). These analyses are typically intended to estimate the sample size needed for at least 1 locus to exceed a genome-wide significance threshold. A related question that is less commonly considered is the number of significant loci that will be discovered with a given sample size. We used simulations based on a real data set that consisted of 3,173 male and female adult N/NIH heterogeneous stock rats to explore the relationship between sample size and the number of significant loci discovered. Our simulations examined the number of loci identified in subsamples of the full data set. The subsampling analysis was conducted for 4 traits with low (0.15 ± 0.03), medium (0.31 ± 0.03 and 0.36 ± 0.03), and high (0.46 ± 0.03) SNP-based heritabilities. For each trait, we subsampled the data 100 times at different sample sizes (500, 1,000, 1,500, 2,000, and 2,500). We observed an exponential increase in the number of significant loci with larger sample sizes. Our results are consistent with similar observations in human GWAS and imply that future rodent GWAS should use sample sizes that are significantly larger than those needed to obtain a single significant result.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Masculino , Femenino , Humanos , Animales , Ratas , Estudio de Asociación del Genoma Completo/métodos , Tamaño de la Muestra , Polimorfismo de Nucleótido Simple , Fenotipo
12.
bioRxiv ; 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36778406

RESUMEN

Exonic variants present some of the strongest links between genotype and phenotype. However, these variants can have significant inter-individual pathogenicity differences, known as variable penetrance. In this study, we propose a model where genetically controlled mRNA splicing modulates the pathogenicity of exonic variants. By first cataloging exonic inclusion from RNA-seq data in GTEx v8, we find that pathogenic alleles are depleted on highly included exons. Using a large-scale phased WGS data from the TOPMed consortium, we observe that this effect may be driven by common splice-regulatory genetic variants, and that natural selection acts on haplotype configurations that reduce the transcript inclusion of putatively pathogenic variants, especially when limiting to haploinsufficient genes. Finally, we test if this effect may be relevant for autism risk using families from the Simons Simplex Collection, but find that splicing of pathogenic alleles has a penetrance reducing effect here as well. Overall, our results indicate that common splice-regulatory variants may play a role in reducing the damaging effects of rare exonic variants.

13.
Nucleic Acids Res ; 50(19): 10882-10895, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36263809

RESUMEN

Heterogeneous Stock (HS) rats are a genetically diverse outbred rat population that is widely used for studying genetics of behavioral and physiological traits. Mapping Quantitative Trait Loci (QTL) associated with transcriptional changes would help to identify mechanisms underlying these traits. We generated genotype and transcriptome data for five brain regions from 88 HS rats. We identified 21 392 cis-QTLs associated with expression and splicing changes across all five brain regions and validated their effects using allele specific expression data. We identified 80 cases where eQTLs were colocalized with genome-wide association study (GWAS) results from nine physiological traits. Comparing our dataset to human data from the Genotype-Tissue Expression (GTEx) project, we found that the HS rat data yields twice as many significant eQTLs as a similarly sized human dataset. We also identified a modest but highly significant correlation between genetic regulatory variation among orthologous genes. Surprisingly, we found less genetic variation in gene regulation in HS rats relative to humans, though we still found eQTLs for the orthologs of many human genes for which eQTLs had not been found. These data are available from the RatGTEx data portal (RatGTEx.org) and will enable new discoveries of the genetic influences of complex traits.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Animales , Ratas , Humanos , Sitios de Carácter Cuantitativo/genética , Transcriptoma , Genotipo , Encéfalo , Polimorfismo de Nucleótido Simple
14.
Nature ; 608(7922): 353-359, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35922509

RESUMEN

Regulation of transcript structure generates transcript diversity and plays an important role in human disease1-7. The advent of long-read sequencing technologies offers the opportunity to study the role of genetic variation in transcript structure8-16. In this Article, we present a large human long-read RNA-seq dataset using the Oxford Nanopore Technologies platform from 88 samples from Genotype-Tissue Expression (GTEx) tissues and cell lines, complementing the GTEx resource. We identified just over 70,000 novel transcripts for annotated genes, and validated the protein expression of 10% of novel transcripts. We developed a new computational package, LORALS, to analyse the genetic effects of rare and common variants on the transcriptome by allele-specific analysis of long reads. We characterized allele-specific expression and transcript structure events, providing new insights into the specific transcript alterations caused by common and rare genetic variants and highlighting the resolution gained from long-read data. We were able to perturb the transcript structure upon knockdown of PTBP1, an RNA binding protein that mediates splicing, thereby finding genetic regulatory effects that are modified by the cellular environment. Finally, we used this dataset to enhance variant interpretation and study rare variants leading to aberrant splicing patterns.


Asunto(s)
Alelos , Perfilación de la Expresión Génica , Especificidad de Órganos , RNA-Seq , Transcriptoma , Empalme Alternativo/genética , Línea Celular , Conjuntos de Datos como Asunto , Genotipo , Ribonucleoproteínas Nucleares Heterogéneas/deficiencia , Ribonucleoproteínas Nucleares Heterogéneas/genética , Humanos , Especificidad de Órganos/genética , Proteína de Unión al Tracto de Polipirimidina/deficiencia , Proteína de Unión al Tracto de Polipirimidina/genética , Reproducibilidad de los Resultados , Transcriptoma/genética
15.
PLoS Genet ; 18(1): e1009719, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35100260

RESUMEN

Tens of thousands of genetic variants associated with gene expression (cis-eQTLs) have been discovered in the human population. These eQTLs are active in various tissues and contexts, but the molecular mechanisms of eQTL variability are poorly understood, hindering our understanding of genetic regulation across biological contexts. Since many eQTLs are believed to act by altering transcription factor (TF) binding affinity, we hypothesized that analyzing eQTL effect size as a function of TF level may allow discovery of mechanisms of eQTL variability. Using GTEx Consortium eQTL data from 49 tissues, we analyzed the interaction between eQTL effect size and TF level across tissues and across individuals within specific tissues and generated a list of 10,098 TF-eQTL interactions across 2,136 genes that are supported by at least two lines of evidence. These TF-eQTLs were enriched for various TF binding measures, supporting with orthogonal evidence that these eQTLs are regulated by the implicated TFs. We also found that our TF-eQTLs tend to overlap genes with gene-by-environment regulatory effects and to colocalize with GWAS loci, implying that our approach can help to elucidate mechanisms of context-specificity and trait associations. Finally, we highlight an interesting example of IKZF1 TF regulation of an APBB1IP gene eQTL that colocalizes with a GWAS signal for blood cell traits. Together, our findings provide candidate TF mechanisms for a large number of eQTLs and offer a generalizable approach for researchers to discover TF regulators of genetic variant effects in additional QTL datasets.


Asunto(s)
Sitios de Carácter Cuantitativo , Factores de Transcripción/fisiología , Alelos , Sitios de Unión , Técnicas de Silenciamiento del Gen , Interacción Gen-Ambiente , Estudio de Asociación del Genoma Completo , Humanos , Factor 1 Regulador del Interferón/genética , Modelos Genéticos , Fenotipo , Factores de Transcripción/metabolismo
16.
Front Genet ; 13: 1029058, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36793389

RESUMEN

Elevated intraocular pressure (IOP) is influenced by environmental and genetic factors. Increased IOP is a major risk factor for most types of glaucoma, including primary open angle glaucoma (POAG). Investigating the genetic basis of IOP may lead to a better understanding of the molecular mechanisms of POAG. The goal of this study was to identify genetic loci involved in regulating IOP using outbred heterogeneous stock (HS) rats. HS rats are a multigenerational outbred population derived from eight inbred strains that have been fully sequenced. This population is ideal for a genome-wide association study (GWAS) owing to the accumulated recombinations among well-defined haplotypes, the relatively high allele frequencies, the accessibility to a large collection of tissue samples, and the large allelic effect size compared to human studies. Both male and female HS rats (N = 1,812) were used in the study. Genotyping-by-sequencing was used to obtain ∼3.5 million single nucleotide polymorphisms (SNP) from each individual. SNP heritability for IOP in HS rats was 0.32, which agrees with other studies. We performed a GWAS for the IOP phenotype using a linear mixed model and used permutation to determine a genome-wide significance threshold. We identified three genome-wide significant loci for IOP on chromosomes 1, 5, and 16. Next, we sequenced the mRNA of 51 whole eye samples to find cis-eQTLs to aid in identification of candidate genes. We report 5 candidate genes within those loci: Tyr, Ctsc, Plekhf2, Ndufaf6 and Angpt2. Tyr, Ndufaf6 and Angpt2 genes have been previously implicated by human GWAS of IOP-related conditions. Ctsc and Plekhf2 genes represent novel findings that may provide new insight into the molecular basis of IOP. This study highlights the efficacy of HS rats for investigating the genetics of elevated IOP and identifying potential candidate genes for future functional testing.

17.
Nat Commun ; 12(1): 4569, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34315903

RESUMEN

Despite rapid progress in characterizing the role of host genetics in SARS-Cov-2 infection, there is limited understanding of genes and pathways that contribute to COVID-19. Here, we integrate a genome-wide association study of COVID-19 hospitalization (7,885 cases and 961,804 controls from COVID-19 Host Genetics Initiative) with mRNA expression, splicing, and protein levels (n = 18,502). We identify 27 genes related to inflammation and coagulation pathways whose genetically predicted expression was associated with COVID-19 hospitalization. We functionally characterize the 27 genes using phenome- and laboratory-wide association scans in Vanderbilt Biobank (n = 85,460) and identified coagulation-related clinical symptoms, immunologic, and blood-cell-related biomarkers. We replicate these findings across trans-ethnic studies and observed consistent effects in individuals of diverse ancestral backgrounds in Vanderbilt Biobank, pan-UK Biobank, and Biobank Japan. Our study highlights and reconfirms putative causal genes impacting COVID-19 severity and symptomology through the host inflammatory response.


Asunto(s)
COVID-19/metabolismo , COVID-19/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Hospitalización , Humanos , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo
18.
Haematologica ; 106(8): 2233-2241, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32675224

RESUMEN

Human immunodeficiency virus (HIV) infection is associated with an increased risk of non-Hodgkin lymphoma (NHL). Even in the era of suppressive antiretroviral treatment, HIV-infected individuals remain at higher risk of developing NHL compared to the general population. To identify potential genetic risk loci, we performed case-control genome-wide association studies and a meta-analysis across three cohorts of HIV+ patients of European ancestry, including a total of 278 cases and 1924 matched controls. We observed a significant association with NHL susceptibility in the C-X-C motif chemokine ligand 12 (CXCL12) region on chromosome 10. A fine mapping analysis identified rs7919208 as the most likely causal variant (P = 4.77e-11), with the G>A polymorphism creating a new transcription factor binding site for BATF and JUND. These results suggest a modulatory role of CXCL12 regulation in the increased susceptibility to NHL observed in the HIV-infected population.


Asunto(s)
Infecciones por VIH , Linfoma Relacionado con SIDA , Linfoma no Hodgkin , Antirretrovirales/uso terapéutico , Estudios de Casos y Controles , Quimiocina CXCL12 , Estudio de Asociación del Genoma Completo , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Humanos , Linfoma Relacionado con SIDA/tratamiento farmacológico , Linfoma no Hodgkin/tratamiento farmacológico , Linfoma no Hodgkin/genética , Polimorfismo Genético
19.
Nat Genet ; 53(1): 110-119, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33349701

RESUMEN

Expression quantitative trait loci (eQTLs) studies provide associations of genetic variants with gene expression but fall short of pinpointing functionally important eQTLs. Here, using H3K27ac HiChIP assays, we mapped eQTLs overlapping active cis-regulatory elements that interact with their target gene promoters (promoter-interacting eQTLs, pieQTLs) in five common immune cell types (Database of Immune Cell Expression, Expression quantitative trait loci and Epigenomics (DICE) cis-interactome project). This approach allowed us to identify functionally important eQTLs and show mechanisms that explain their cell-type restriction. We also devised an approach to eQTL discovery that relies on HiChIP-based promoter interaction maps as a structural framework for deciding which SNPs to test for association with gene expression, and observe ultra-long-distance pieQTLs (>1 megabase away), including several disease-risk variants. We validated the functional role of pieQTLs using reporter assays, CRISPRi, dCas9-tiling guides and Cas9-mediated base-pair editing. In this article we present a method for functional eQTL discovery and provide insights into relevance of noncoding variants for cell-specific gene regulation and for disease association beyond conventional eQTL mapping.


Asunto(s)
Regulación de la Expresión Génica , Variación Genética , Regiones Promotoras Genéticas , Sitios de Carácter Cuantitativo/genética , Acetilación , Secuencia de Bases , Elementos de Facilitación Genéticos/genética , Epigénesis Genética , Estudio de Asociación del Genoma Completo , Genotipo , Histonas/metabolismo , Humanos , Células Jurkat , Leucocitos/metabolismo , Lisina/metabolismo , Análisis de Componente Principal
20.
Curr Opin Genet Dev ; 66: 10-19, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33383480

RESUMEN

Allele-specific gene expression can influence disease traits. Non-coding germline genetic variants that alter regulatory elements can cause allele-specific gene expression and contribute to cancer susceptibility. In tumors, both somatic copy number alterations and somatic single nucleotide variants have been shown to lead to allele-specific expression of genes, many of which are considered drivers of tumor growth. Here, we review recent studies revealing the pervasive presence of this phenomenon in cancer susceptibility and progression. Furthermore, we underscore the importance of careful experimental design and computational analysis for accurate allelic expression quantification and avoidance of false positives. Finally, we discuss additional methodological challenges encountered in cancer studies and in the burgeoning field of single-cell transcriptomics.


Asunto(s)
Predisposición Genética a la Enfermedad , Mutación de Línea Germinal/genética , Neoplasias/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Alelos , Biología Computacional , Variaciones en el Número de Copia de ADN , Regulación Neoplásica de la Expresión Génica/genética , Estudio de Asociación del Genoma Completo , Humanos , Neoplasias/epidemiología , Neoplasias/patología , Polimorfismo de Nucleótido Simple/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...